امروز: پنجشنبه 9 فروردین 1403
دسته بندی محصولات
بخش همکاران
بلوک کد اختصاصی

لیزر و کاربردهای آن

لیزر و کاربردهای آن دسته: برق
بازدید: 6 بار
فرمت فایل: doc
حجم فایل: 433 کیلوبایت
تعداد صفحات فایل: 63

امروزه لیزر كاربردهای بیشماری دارد كه همه زمینه های مختلف علمی و فنی فیزیكشیمیزیست شناسی الكترونیك و پزشكی را شامل می شود همه این كاربردها نتیجه مستقیم همان ویژگی های خاص نور لیزر است

قیمت فایل فقط 19,500 تومان

خرید

لیزر و کاربردهای آن

مقدمه

امروزه لیزر كاربردهای بیشماری دارد كه همه زمینه های مختلف علمی و فنی فیزیك-شیمی-زیست شناسی - الكترونیك و پزشكی را شامل می شود. همه این كاربردها نتیجه مستقیم همان ویژگی های خاص نور لیزر است

لیزر چیست ؟

  نور لیزر نوع كاملاً جدیدی از نور است؛ درخشان‌تر و شدیدتر از هرچه كه در طبیعت یافت می‌شود. می‌توان نور لیزری آن‌چنان قوی تولید كرد كه هر ماده‌ی شناخته شده‌ی روی زمین را در كسری از ثانیه بخار كند. می تواند سخترین فلزات را سوراخ كند یا به راحتی جسم سختی مثل الماس را سوراخ كند و از آن بگذرد.

    برعكس، باریكه‌ی كم قدرت و فوق‌‌العاده دقیق انواع دیگر لیزر را می‌توان برای انجام دادن كارهای بسیار ظریف مثل جراحی روی چشم انسان به كار برد. نور لیزر را می‌توان خیلی دقیق كنترل كرد و به صورت باریكه‌ی مداومی به نام موج پیوسته یا انفجارهای سریعی به نام پالس درآورد.

    اگرچه اصول بنیادی لیزر از 40 سال پیش شناخته شده بود، نمایش اولین لیزر، دریچه‌‌ای را به طرف یكی از هیجان انگیزترین و پردامنه‌ترین پیشرفت های تكنولوژی قرن بیستم گشود. در ظرف چند سال پس از نمایش اولین لیزر، انواع بسیار گوناگونی از لیزرها به صورت ابزارهای عملی به صور گوناگون به كار گرفته شدند. لیزرها در تكنولوژی انقلابی جدید پدید آورده‌اند و تأ ثیر آن‌ها بر زندگی ما در آینده نیز ادامه خواهد داشت.

    امروزه گستره‌‌ی وسیعی از لیزرها در همه جا به كار گرفته شده‌اند. فروشگاه‌های بزرگ و بسیاری از انبارهای بزرگ خورده‌فروشی برای جستجوی خود‌به‌خود، ثبت قیمت‌‌ها و صورت‌برداری از اقلام خریداری شده، در قسمت حساب كننده از لیزر بهره می‌گیرند. در دستگاه‌‌های ویدئویی از نور لیزر برای خواندن دیسك‌های ویدئویی و ایجاد تصویر متحرك همراه با صدا استفاده می‌كنند. مقدار زیادی اطلاعات را روی دیسك‌‌های لیزری ثبت می‌كنند تا بعداً روی صفحه‌ی كامپیوتر خوانده شوند یا توسط چاپگرهای لیزری به شكل نسخه‌ی سخت روی كاغذ چاپ شوند.

    در پزشكی نور لیزر به عنوان نوع جدیدی چاقوی جراحی بدون خونریزی استفاده می‌شوند و وقتی كه نسجی مثل قسمت معیوب كیسه‌ی صفرا در خلال جراحی برداشته می‌شود، رگ‌های خونی بسته می‌‌شوند. كارهای دندانپزشكی با لیزر درد كمتری دارند و برای روكش و پل دندان از لیزرها استفاده می‌شود.

    در صنعت از لیزرها برای عملیات گرمایی فلزات، جوش دادن قسمت‌ها به یكدیگر و وسایل هم‌ترازی دقیق استفاده می‌شود. لیزرها را برای اندازه‌گیری دقیق فاصله‌های خیلی بزرگ و نیز فاصله‌های خیلی كوچك به كار می‌برند. افزون بر این‌ها لیزرها را همراه با تارهای نوری، برای انتقال بهتر داده‌ها و بهبود ارتباط تلفنی به كار می‌گیرند. لیزرها در حال تغییر دادن نحوه‌ی پژوهش دانشمندان هستند. لیزرها می‌توانند چشمه‌ی جدیدی از قدرت الكتریكی بیافرینند، مشابه فرایندی كه در خورشید برای تولید انرژی به وجود می‌‌آید.

خواص نور لیزر و كاربرد‌های آن
‏ از نخستین روزهای ساخت لیزر پی برده شد كه نور لیزر خواص مشخصه‌ای دارد كه آن را از نورهای ایجاد شده از سایر منابع، متمایز می‌كند. در ابتدا به این ویژگی‌ها و نحوه ایجاد آنها توسط لیزر اشاره خواهیم كرد. لیزر دارای سه ویژگی مهم است:
تك‌فامی
‏     در توضیح این ویژگی لازم است ابتدا با مفهوم گسیل القایی ( نشر القایی)آشنا شویم. گسیل پرتو توسط الكترونهای برانگیخته در داخل اتم به دو صورت است :1 ) گسیل خود به‌خودی  2) گسیل القایی
فرض كنید ‏1 ‏ ‏e‏ و ‏e2 دو تراز متوالی از یك اتم با انرژی‌های 1‏ ‏E و‏2‏ ‏E باشد و الكترونی در تراز e1 در حالت پایه خود قرار گرفته باشد. اگر به هر دلیلی این الكترون از تراز ‏1‏ ‏e به تراز بالاتر ‏2‏ ‏e‏ برود گفته میشود اتم تحریك شده است یا در حالت برانگیخته قرار دارد. چون این حالت یك حالت‏ ‏ ناپایدار است اتم تمایل دارد هرچه زودتر به حالت پایدار باز گردد. به همین دلیل الكترون مزبور بلافاصله به حالت قبلی در تراز‏1‏ ‏e بر خواهد گشت. از طرفی چون این دو تراز اختلاف انرژی 1‏ ‏E‏ ‏E 2-‏ دارد بنا بر اصل پایستگی انرژی، انرژی اضافی الكترون به صورت تابش با فركانس ‏V، حین بازگشت به تراز اول گسیل می‌شود. به این فرآیند گسیل خودبه‌خودی گویند. حال اگر الكترونی در تراز‏2‏ ‏e در حالت پایه خود قرار داشته باشد و ما به طریقی اتم را تحریك كنیم ( میدان الكترومغناطیسی، تابش، حرارت و... ) در اثر این القا الكترون مزبور تراز ‏2‏ ‏E را ترك نموده وبه تراز ‏ E1برود و حین این انتقال ( بنا به اصل پایستگی انرژی ) تابش گسیل كند به این تابش گسیل القایی یا نشر القایی گویند. ‏
‏     هر كدام از این فرآیندها ویژگی‌های خاص خود را دارد. در گسیل خودبه‌خودی تابش‌های گسیل شده به صورت كاتوره‌ای و در تمام جهات گسترده است. اما در گسیل القایی جهت تابش در یك راستای معین خواهد بود. از طرفی در گسیل خودبخودی فوتونهای تابشی  در اثر گزار بین اتمهای ترازهای اتمی یا مولكولی مختلف و متفاوت از هم به وجود می‌آیند پس این تابش‌ها طیف گسترده‌ای از فركانس‌ها را شامل می‌شود. ‏
‏     اما در گسیل القایی تابش در اثر گزار بین ترازهای اتمی یا مولكولی مشابه گسیل می‌شود. بنابراین همه تابش‌ها تقریبا فركانس یكسانی دارد. معمولا در لیزر از فرآیند گسیل القایی استفاده می‌شود. اما برای داشتن گسیل القایی طولانی مدت به مولكول‌هایی شامل دوتراز كه تراز بالایی آن پروتراز پایینی آن خالی باشد، نیاز داریم. اما آنچه كه نظریه‌های كوانتومی  بیان می‌كنند این است كه بنا به قاعده گزینش  در اتم‌ها ابتدا ترازهای پایین‌تر پر می‌شود. بنابراین  به وضعیت به‌وجود آمده  در لیزر، وارونگی جمعیت گویند. نحوه ایجاد وارونگی جمعیت  بسته به نوع لیزر متفاوت است. مثلا در لیزر هلیوم نئون مخلوط  كردن این دو گاز منجر به جفت شدن برخی تراز‌ها ی اتمی آن دو شده و وارونگی جمعیت مورد نیاز را تامین می‌كند. به این ترتیب لیزر قادر به ایجاد تابشی تك فركانس  خواهد بود. با این وجود برای تك فركانس شدن بیشتر از یك عنصر اپتیك مانند بازآواگر( سنجه) نیزدر لیزر استفاده می‌شود. ‏
ویژگی تك‌فامی نور لیزر بیشتر كاربرد شیمیایی دارد. به عنوان مثال برای جدا سازی ایزوتوپ‌های یك عنصر به یك منبع تك‌فام مانند لیزر نیاز است. ایزوتوپ‌های یك عنصر از نظر محتوا باهم متفاوت است پس فركانس‌های جذب آنها نیز اندكی متفا وت خواهد بود كه تنها نور لیزر قادر به تفكیك آنها است. تمایل زیاد به استفاده از این كاربرد در صنایع هسته‌ای نیز غیرمنتظره نیست. ‏

همدوسی
‏     تابش الكترو مغناطیس  به وسیله بارهای الكتریكی نوسان كننده تولید می‌شود. بسامد نوسان نوع تابشی را كه گسیل می‌شود، معین می‌كند. اگر در یك چشمه، بارها ی الكتریكی  به طور هماهنگ نوسان كند چشمه را همدوس و تابش حاصل را تابش همدوس می‌نامیم. همانطور كه قبلا گفته شد در لیزر از گسیل القایی استفاده می‌شود. در این فرآیند می‌توان اتم را به نحوی تحریك كرد كه همه الكترونهای برانگیخته فقط به تراز‌های خاصی برود و در نتیجه فركانس تابشی آنها همه در یك محدوده خواهد بود. پس تمام این تابش‌ها با هم هماهنگ است كه این همان تعریف چشمه همدوس است. از همدوسی نور لیزر می‌توان در تمام‌نگاری استفاده كرد. تمام‌نگاری روشی  جهت تهیه تصاویر سه بعدی است. در این روش تصویر ویژه‌ای به نام تمام نگاشت روی فیلم عكاسی تشكیل می‌شود كه بر خلاف دیگر تصاویر متداول عكاسی، حاوی اطلاعاتی نه تنها پیرامون شدت بلكه در مورد فاز نور بازتابیده از جسم نیز هست. واضح است كه منبع نور آشفته چون خود دارای پرتو هایی  با فازهای مختلف است قادر به تشكیل چنین تصویری نخواهد بود. تنها  مشكل موجود برای چنین تصاویری آن است كه تنها امكان تهیه تمام نگاشت‌های تك‌فام وجود دارد زیرا برای تشخیص رنگهای واقعی جسم باید از تابش طول موج‌های مختلف به طور همزمان استفاده كرد كه در آن صورت اطلاعات مربوط به فاز از بین می‌رود. ‏

شدت زیاد
‏     شدت زیاد، خاصیتی است كه بیش از سایر موارد همراه نور لیزر است و در حقیقت لیزرها بالاترین شدت‌های شناخته شده روی زمین  را ایجاد می‌كند. از آنجا كه لیزر باریكه‌ای موازی از نور را نه در تمام جهت‌ها، بلكه در راستای مشخصی گسیل می‌كند. مناسب‌ترین معیار شدت، تابیدگی است. بنا بر رابطه بین توان تابش شده وتابیدگی: 
I = P / A
‏ كه در آن P توان و ‏A مساحت است می‌توان در مورد شدت‌ها ی زیاد بحث كرد. ازآنجایی كه خروجی منابع نور معمولی اكثرا پرتو‌های واگرا است با دور شدن از چشمه به علت افزایش مساحت با ثابت ماندن توان (توان به ویژگی خود چشمه بستگی دارد )میزان شدت آن كاهش می‌یابد اما در لیزر به علت موازی بودن پرتوها، هر چه فاصله از منبع بیشتر شود با ثابت ماندن توان، مساحت سطح مقطع باریكه خروجی نیز تقریبا ثابت است و در نتیجه شدت در فاصله دوراز منبع همان مقداری را دارد كه پرتو خروجی از منبع دارد. ‏
‏     اما اینكه چرا شدت خروجی از لیزر تا به این اندازه زیاد است، به توان لیزر بر می‌گردد. داخل لیزر سیستمی وجود دارد كه نور ورودی به هنگام خروج تقویت می‌شود. همچنین با استفاده از ابزارهای اپتیك مناسب در لیزر می‌توان به شدت‌هایی دست یافت كه از شدت خود منبع فراتر رود. ‏
‏     لازم به توضیح است كه شدت نور خروجی از لیزر دارای توزیع گوسی است، یعنی شدت برای لحظه  كوتاهی بیشترین مقدار خود را دارد. در ابتدا یك صعود ودر انتها یك نزول برای آن وجود دارد. پس یك طول عمر برای شدت حداكثر می‌توان تعریف كرد. طول عمر شدت ماكزیمم معمولا خیلی كوتاه است. یكی از كاربرد‌های كوتاه بودن عمر شدت‌های بالا در هرتپ، در چشم پزشكی است. مثلا پارگی شبكیه را كه باعث كوری موضعی می‌شود می‌توان با جوشكاری نقطه‌ای توسط تپ‌های پر شدت نور حاصل از لیزر آرگون با بافت نگهدارنده آن متصل كرد. به علت كوتاه بودن عمر  یك تپ، حین عمل نیازی به بیهوشی، بی حركت كردن طولانی چشم و... وجود ندارد. در كاربرد‌های دیگر پزشكی كوتاه بودن طول عمرتپ مانع از احساس درد در بیماران می‌شود. چرا كه زمان هرتپ بسیار كوتاهتر از زمان لازم برای فرستادن پیغام  توسط اعصاب به مغز و بازگشت آن به محل درد است. ‏
ساختمان لیزر
در شكل شماره (1) طرح ساده‌ای از یك لیزر گازی را مشاهده می‌كنید. ساختار اصلی در اكثر لیزرها مشابه است. لیزر در واقع یك نوسان كننده اپتیك است كه از یك محیط تقویت‌كننده نور كه در داخل یك بازآواگر قرار دارد تشكیل می‌شود. پس اصلی‌ ترین قسمت در لیزر محیطی است كه بتواند نور عبوری را تقویت كند. در لیزر‌های گازی از مخلوط یك یا چند گاز ( هلیوم، نئون، آرگون و... ) به صورت خالص به عنوان محیط تقویت كننده استفاده می‌شود. بخار فلزی كادمیوم، جیوه، سرب و... نیز در لیزر‌های گازی كاربرد دارد. از انواع دیگر لیزر‌های گازی، لیزر مولكول ازت( ‏2‏ ‏N‏) و لیزر دی اكسید كربن (‏CO2‏) است.‏
محیط تقویت كننده معمولا توسط یك محرك بیرونی به كار می‌افتد و شروع به تابش می‌كند. در اثر این تحریك، الكترون‌های هر اتم مدار خود را ترك كرده به مدار پایین تر در اتم مربوط می‌رود. جهت برقراری اصل پایستگی انرژی (به علت وجود اختلاف انرژی بین دو مدار) حین این گذار تابش خواهند كرد. این تابش نسبتا تك فام است زیرا عمل تحریك طوری است كه عمل گذار بین تراز‌های یكسان اتفاق بیفتد. در لیزر نشان داده شده این محرك استفاده از روش تخلیه جریان الكتریكی است كه به دو نوع تخلیه جریان مستقیم و تخلیه جریان متناوب در لیزر‌های گازی متداول است. روش تخلیه جریان متناوب ساده‌ترین روش   تحریك است چرا كه منبع تغذیه می‌تواند یك مبدل عمومی ولتاژ كه به الكترود‌های فلزی سرد در داخل لامپ متصل می‌شود، باشد. از روش‌های دیگر بر انگیزش الكتریكی محیط لیزری، می‌توان روش تخلیه الكترودی با بسامد بالا ( كه در اولین لیزر هلیوم نئون ساخته شده توسط جوان و همكارانش استفاده شده بود. ) و روش تپ‌های فشار قوی ( برای استفاده در لیزر‌های تپی پر توان) اشاره كرد. ‏
‏      در قسمت دیگر یك لیزر در دوجداره ابتدا و انتها از دو آینه صاف كه با زاویه معلوم نسبت به افق به طور موازی با هم قرار دارد، استفاده می‌شود به چنین سیستم اپتیك، دریچه‌های بروستر گفته می‌شود. كاربرد این دریچه‌ها در قطبیده نمودن پرتوهاست. این دریچه‌ها برای یك جهت قطبیدگی خاص شفاف است ولی برای عبور قطبیدگی عمود بر آن ضریب عبور صفر است و تمام نور بازتابیده خواهد شد. استفاده از این وسیله در لیزر موجب قطبیدگی خطی نور خروجی از لیزر خواهد شد. ‏
‏     قسمت مهم دیگر لیزر استفاده از بازآواگر است. بازآواگر وسیله‌ای اپتیكی است كه از دو آینه (تخت یا خمیده) تشكیل می‌شود به طوری كه محیط تقویت كننده در میان آنها قرار دارد. تابش خروجی از تقویت كننده پس از قطبیده شدن توسط دریچه‌های بروستر به یكی از این آینه‌ها برخورد نموده جزئی از پرتو عبور و جرئی از آن بازتاب می‌یابد. پرتو بازتابیده دوباره مسیر محیط تقویت كننده و دریچه بروستر را پیموده و به آینه سمت مقابل بر خورد می‌كند. به این ترتیب عمل عبور و بازتاب بار‌ها تكرار می‌شود. نهایتا نور خروجی از تقویت كننده در اثر رفت و آمد بین دو آینه به صورت یك موج ایستاده در می‌آید. لازم به ذكر است كه برای خروج انرژی از بازآواگر دو آینه به طور جزئی شفاف است. ویژگی پرتو خروجی از بازآواگر تك فام بودن آن است. در وواقع بازآواگر عمل گزینش فركانس را انجام می‌دهد. ‏
شكل شماره (2) طرحی كلی از داخل یك لیزر هلیوم-نئون را نشان می‌دهد. محیط لیزری، دریچه‌های بروستر، آینه‌های بازآواگر، سیستم مربوط به محرك، محیط لیز كننده و سایر جزئیات مورد نیاز مانند لایه محافظ  و شفاف آلومینیومی  جهت جلوگیری از خروج انرژی از دیواره‌ها و بازتاب آن به داخل محیط تقویت كننده در شكل نشان داده شده است.

لیزر و کاربردهای آن

فكر ساختن وسیله‌ای كه نور همدوس تولید كند ، مدتها دانشمندان قرن حاضر را به خود مشغول داشته بود . در سال 1985 فیزیكدان مشهور آمریكایی چالز تاونز راه این كار را پیدا كرد . دو سال بعد دانشمند دیگر آمریكایی ، تئودور مایمن به نظریه تاونز جامه عمل پوشاند و اولین لیزر را با بلوری از یاقوت مصنوعی ساخت این دو بعداً به دریافت جایزه نوبل نایل آمدند . یك لیزر یاقوتی ساده از سه بخش تشكیل می‌شود : استوانه‌ای از یاقوت مصنوعی ، یك چشمه نور ـ مثلاً یك لامپ گزنون كه مانند لامپ نئون كار می‌كند . ( گزنون و زنون هر دو از گازهای بی‌اثرند یعنی اتمهایشان با اتمهای دیگر مولكول نمی‌سازد . ) ـ و یك بازتابنده كه نور را از لامپ گزنون به یاقوت هدایت می‌كند

استوانه یاقوتی ، بخش اصلی دستگاه است . قطر آن در حدود 7 میلیمتر و طولش 3.5 تا 5 cm است . دو قاعده استوانه صیقل خورده و نقره اندود شده است تا آینه كاملی باشد . قاعده دیگر نیز نقره اندود است ولی نه كاملاً به طوری كه می‌تواند قسمتی از نور را از خود عبور دهد .

یاقوت بلور اكسید آلومینیوم است كه در آن تعداد نسبتاً كمی اتم كروم معلق است . اتمهای كروم از طریق گسیل القایی ، كوانتوم نور تولید می‌كنند ، اتمهای اكسیژن و آلومینیم كه بقیه بلور را تشكیل می‌دهند فقط اتمهای كروم را در جایشان نگه می‌دارند. اتمهای كروم نسبتاً بزرگ است و تعداد زیادی الكترون در مدارهایشان دارد . در این جا فقط الكترونی مورد توجه ماست كه بیش از دیگران برانگیخته می‌شود .

لازم به ذكر است واژه لیزر از حروف اول (( تقویت نور بوسیله گسیل برانگیخته تابش )) در زبان انگلیسی گرفته شده كه آن را می‌توان توسعه “maser” تقویت میكروویو بوسیله گسیل برانگیخته تابش در محدوده فوتونی طیف امواج الكترومغناطیسی دانست

كاربرد لیزر در فیزیك و شیمی

اختراع لیزر و تكامل آن وابسته به معلومات پایه ای است كه در درجه اول از رشته فیزیك و بعد از شیمی گرفته شده اند. بنابراین طبیعی است كه استفاده از لیزر در فیزیك و شیمی از اولین كاربردهای لیزر باشند

رشته دیگری كه در آن لیزر نه تنها امكانات موجود را افزایش داده بلكه مفاهیم كاملا جدیدی را عرضه كرده است طیف نمایی است. اكنون با بعضی از لیزرها می توان پهنای خط نوسانی را تا چند ده كیلوهرتز باریك كرد ( هم در ناحیه مرئی و هم در ناحیه فروسرخ ) و با این كار اندازه گیری های مربوط به طیف نمایی با توان تفكیك چند مرتبه بزرگی ( 3 تا 6) بالاتر از روش های معمولی طیف نمایی امكان پذیر می شوند. لیزر همچنین باعث ابداع رشته جدید طیف نمایی غیر خطی شد كه در آن تفكیك طیف نمایی خیلی بالاتر از حدی است كه معمولا با اثرهای پهن شدگی دوپلر اعمال می شود. این عمل منجر به بررسیهای دقیقتری از خصوصیات ماده شده است.

در زمینه شیمی از لیزر هم برای تشخیص و هم برای ایجاد تغییرات شیمیایی برگشت ناپذیر استفاده شده است. ( فوتو شیمی لیزری) به ویژه در فون تشخیص باید از روش های (پراكندگی تشدیدی رامان ) و ( پراكندگی پاد استوكس همدوس رامان ) (CARS) نام ببریم. به وسیله این روشها می توان اطلاعات قابل ملاحظه ای درباره خصوصیات مولكولهای چند اتمی به دست آورد ( یعنی فركانس ارتعاشی فعال رامن - ثابتهای چرخشی و ناهماهنگ بودن فركانس). روش CARS همچنین برای اندازه گیری غلظت و دمای یك نمونه مولكولی در یك ناحیه محدود از فضا به كار می رود. از این توانایی برای بررسی جزئیات فرایند احتراق شعله و پلاسما ( تخلیه الكتریكی) بهره برداری شده است.

شاید جالبتری كاربرد شیمیایی ( دست كم بالقوه ) لیزر در زیمنه فوتو شیمی باشد. اما باید در نظر داشته باشیم به خاطر بهای زیاد فوتونهای لیزری بهره برداری تجاری از فوتوشیمی لیزری تنها هنگامی موجه است كه ارزش محصول نهایی خیلی زیاد باشد. یكی از این موارد جداسازی ایزوتوپها است.

كاربرد در زیست شناسی

از لیزر به طور روزافزونی در زیست شناسی و پزشكی استفاده می شود. اینجا هم لیزر می تواند ابزار تشخیص و یا وسیله برگشت ناپذیر مولكولهای زنده یك سلول و یا یك بافت باشد. ( زیست شناسی نوری و جراحی لیزری)

در زیست شناسی مهمترین كاربرد لیزر به عنوان یك وسیله تشخیصی است. ما در اینجا تكنیك های لیزری زیر را ذكر می كنیم :

الف) فلوئورسان القایی به وسیله تپهای فوق العاده كوتاه لیزر در DNA در تركیب رنگی پیچیده DNA و در مواد رنگی موثر در فتوسنتز

ب) پراكندگی تشدیدی رامان به عنوان روشی برای مطالعه ملكولهای زنده مانند هموگلوبین و یا رودوپسین ( عامل اصلی در سازوكار بینایی)

ج) طیف نمایی همبستگی فوتونی برای بدست آوردن اطلاعاتی در مورد ساختار و درجه انبوهش انواع ملكولهای زنده

د) روشهای تجزیه فوتونی درخشی پیكوثانیه ای برای كاوش رفتار دینامیكی مولكولهای زنده در حالت برانگیخته

به ویژه باید از روشی موسوم به میكروفلوئورمتر جریان یاد كرد. در اینجا سلولهای پستانداران در حالت معلق مجبور می شوند كه از یك اتاقك مخصوص جریان عبور كنند كه در آنجا ردیف می شوند و سپس یكی یكی از باریكه كانونی شده لیزر یونی آرگون عبور می كنند. با قرار دادن یك آشكارساز نوری در جای مناسب می توان این كمیت ها را اندازه گیری كرد :

الف) نورماده ای رنگی كه به یك جزء خاص تشكیل دهنده سلول یعنی DNA متصل ( كه اطلاعاتی راجع بع مقدار آن جزء تشكیل دهنده سلول را به دست می دهد) امتیاز میكروفلوئورمتری جریان در این است كه اندازه گیری ها را برای تعداد زیادی از سلولها در مدت زمان محدود میسر می سازد. به این وسیله می توانیم دقت خوبی برای اندازه گیری آماری داشته باشیم.

در زیست شناسی از لیزر برای ایجاد تغییر برگشت ناپذیر در ملكولهای زنده و یا اجزای تشكیل دهنده سلول هم استفاده می شود. به ویژه تكنیك های معروف به ریز - باریكه را ذكر می كنیم. در اینجا نور لیزر ( مثلا یك لیزر Ar+ تپی ) به وسیله یك عدسی شیئی میكروسكوپ مناسب در ناحیه ای از سلول با قطری در حدود طول موج لیزر (05 µm) كانونی می شود منظور اصلی از این تكنیك مطالعه رفتار سلول پس از آسیبی است كه با لیزر در ناحیه خاصی از آن ایجاد شده است.

در زمینه پزشكی بیشترین كاربرد لیزرها در جراحی است ( جراحی لیزری) اما در بعضی موارد لیزر برای تشخیص نیز به كار می رود. ( استفاده بالینی از میكروفلوئورمتر جریان - سرعت سنجی دوپلری برای اندازه گیری سرعت خون - فلوئورسان لیزری - آندوسكوپی نای برای آشكارسازی تومورهای ریوی در مراحل اولیه

در جراحی از باریكه كانونی شده لیزر ( اغلب لیزر CO2 ) به جای چاقوی جراحی معمولی ( یا برقی ) استفاده می شود. باریكه فروسرخ لیزر CO2 به شدت به وسیله ملكولهای آب موجود در بافت جذب می شود و موجب تبخیر سریع این ملكولها و در نتیجه برش بافت می شود. برتریهای اصلی چاقوی لیزری را می توان به صورت زیر خلاصه كرد :

الف) دقت بسیار زیاد به ویژه هنگامی كه باریكه با یك میكروسكوپ مناسب هدایت شود ( جراحی لیزر)

ب) امكان عمل در نواحی غیر قابل دسترس.. بنابراین عملا هر ناحیه از بدن را كه با یك دستگاه نوری مناسب ( مثلا عدسی ها و آینه ها) قابل مشاهده باشد می توان به وسیله لیزر جراحی كرد.

ج) كاهش فوق العاده خونروی در اثر برش رگهای خونی به وسیله باریكه لیزر ( قطر رگی حدود 0/5 mm )

د) آسیب رسانی خیلی كم به بافتهای مجاور ( حدود چند میكرومتر) اما در مقابل این برتریها باید اشكالات زیر را هم در نظر داشت :

الف) هزینه زیاد و پیچیدگی دستگاه جراحی لیزری

ب) سرعت كمتر چاقوی لیزری

ج) مشكلات قابلیت اعتماد و ایمنی مربوط به چاقوی لیزری

با این اشاره اجمالی به جراحی لیزری اكنون می خواهیم به شرح مفصلتری از تعدادی از این كاربردها بپردازیم . در چشم بیماران مبتلا به مرض قند استفاده شده است در این مورد باریكه لیزر به وسیله عدسی چشم بر روی شبكیه كانونی می شود. پرتو سبز لیزر به شدت به وسیله گلبول های سرخ جذب می شود و اثر حرارتی حاصل باعث اتصال دوباره شبكیه یا انعقاد رگهای آن می شود. اكنون لیزر استفاده روزافزونی در گوش و حلق و بینی پیدا كرده است. استفاده از لیزر در این شاخه از جراحی جذابیت خاصی دارد. زیرا با اعضایی مانند نای - حلق و گوش میانی سروكار دارد كه به علت عدم دسترسی به آن ها جراحی معمولی مشكل است. اغلب در این مورد لیزر همراه با یك میكروسكوپ استفاده می شود. همچنین لیزر برای جراحی داخل دهان نیز مفید است ( برای برداشتن غده های مخاطی ). امتیازات اصلی در اینجا جلوگیری از خونریزی و فقدان لختگی خون و درد پس از عمل جراحی و بهبود سریع بیمار است. لیزر همچنین اهمیت خود را در بهبود خونریزیهای سنگین در جهاز هاضمه ثابت كرده است. در این حالت باریكه لیزر ( معمولا لیزر نئودمیوم یا آرگون یونی ) به وسیله یك تار نوری مخصوص كه در داخل یك آندوسكوپی داخلی قرار گرفته است پرتو لیزر را به ناحیه مورد معالجه هدایت می كند. لیزر همچنین در بیماری زنان مفید است درحالی كه اغلب به همراه یك میكروسكوپ استفاده می شود. كاهش قابل ملاحظه درد و لخته شدن خون ارزش مجدد چاقوی لیزری را بیان می كند. در پوست درمانی اغلب از لیزر برای برداشتن خالها و معالجه امراض رگها استفاده می شود. بالاخزه استفاده از لیزرها در جراحی عمومی و جراحی غده امیدوار كننده است

قیمت فایل فقط 19,500 تومان

خرید

برچسب ها : لیزر , کاربردهای لیزر , پروژه , پژوهش , پایان نامه , مقاله , جزوه , دانلود پروژه , دانلود پژوهش , دانلود پایان نامه , دانلود مقاله , دانلود جزوه

نظرات کاربران در مورد این کالا
تا کنون هیچ نظری درباره این کالا ثبت نگردیده است.
ارسال نظر